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ABSTRACT: In this study, the suitability of mid-infrared (MIR) spectroscopy, combined with principal component analysis
(PCA) and linear discriminant analysis (LDA), was evaluated as a rapid analytical technique to identify smoke tainted wines.
Control (i.e., unsmoked) and smoke-affected wines (260 in total) from experimental and commercial sources were analyzed by
MIR spectroscopy and chemometrics. The concentrations of guaiacol and 4-methylguaiacol were also determined using gas
chromatography−mass spectrometry (GC-MS), as markers of smoke taint. LDA models correctly classified 61% of control wines
and 70% of smoke-affected wines. Classification rates were found to be influenced by the extent of smoke taint (based on GC-MS
and informal sensory assessment), as well as qualitative differences in wine composition due to grape variety and oak maturation.
Overall, the potential application of MIR spectroscopy combined with chemometrics as a rapid analytical technique for screening
smoke-affected wines was demonstrated.
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■ INTRODUCTION
Spectroscopic techniques in the mid-infrared (MIR) region
have been applied to the analyses of a diverse range of
agricultural products, for example, olive oils,1,2 honey,3,4 meat
products,5 cheese,6 and fruits and vegetables,7−9 for purposes
including authentication, classification, quality control, and
compositional determinations. Infrared (IR) spectroscopy
measures changes in the absorption of IR radiation by organic
compounds due to the vibration of fundamental frequencies
(in particular C−H, N−H, and O−H bonds) within different
functional groups.1,10 Spectra in the MIR region (4,000 to
400 cm−1) comprise well-defined bands that can be used for
qualitative analysis to identify organic constituents or to differ-
entiate samples.1,10

Wine is a complex medium, and the diverse nature of its
chemical constituents, many of which are present at only trace
concentrations, can complicate its analysis. Traditional
analytical techniques, such as those using gas (GC) or liquid
chromatography (LC), are often time-consuming and costly
due to sample preparation requirements. By comparison,
spectroscopic techniques are rapid and nondestructive, thereby
offering significant time and cost savings.10 Not surprisingly,
numerous studies have therefore applied MIR spectroscopy to
te analysis of wine. Some recent examples describe the
classification of wines on the basis of geographical origin;11,12

red wine fermentation monitoring;13 analysis of red wine
tannins;14 the use of red wine phenolic extracts to discriminate
between different cultivars;15,16 and the authentication of
wine17 and organic grape production systems.18

The objective of this study was to evaluate the suitability of
MIR spectroscopy as a rapid analytical technique for the
detection of smoke taint in wine. Vineyard exposure to smoke
from bushfires occurring in close proximity to wine regions can
result in the uptake of smoke-derived volatile compounds by

grapes, and in some cases, unpalatable smoke-related sensory
attributes in the resulting wines.19,20 A number of volatile
phenols have been identified in smoke-affected grapes and
wine.19−23 Since these compounds can be readily quantified by
existing gas chromatography−mass spectrometry (GC-MS)
based methods,24 they have been used as marker compounds
for assessing the smoke exposure of grapes and wine, but they
are not considered to be solely responsible for smoke taint.19

Furthermore, recent studies have shown that smoke-derived
phenols can accumulate in glycoconjugate precursor forms.25,26

A comparison of methods for the determination of glyco-
conjugate derivatives of smoke-derived volatile phenols has
recently been reported.27 Wineries typically rely on commercial
laboratories for smoke taint related analyses, and during
periods of high demand, winemakers can experience delays
in results being returned. As such, there is clearly a need for a
rapid analytical method for differentiating smoke-affected
grapes and wine, to give winemakers the opportunity to make
informed processing decisions, within the time constraints of
vintage.

■ MATERIALS AND METHODS
Wine Samples. Samples (260 in total) included experimental

wines sourced from several previous studies,20,28,29 smoke tainted
wines provided by industry, and commercial wines (i.e., without smoke
taint). Experimental wine samples (Table 1) comprised (i) 27 smoke-
affected Shiraz wines from a winemaking trial involving the addition of
oak or tannin to fermentations of grapes harvested from a Victorian
vineyard exposed to smoke from bushfires that occurred between 7
February and 14 March, 2009 (9 treatments each conducted in
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triplicate); (ii) 12 control and 12 smoke-affected Viognier wines from
a winemaking trial involving the fermentation of control and smoke-
affected grapes by indigenous yeast (2 treatments each with 12
replicates), where smoke-affected grapes were harvested from
grapevines exposed to smoke for 30 min under experimental
conditions and control grapes were harvested from unsmoked
grapevines; (iii) 30 control and 30 smoke-affected Grenache wines
from winemaking trials involving either different skin contact times
(4 treatments each conducted in triplicate) or selection of different yeast
strains for fermentation (16 treatments each conducted in triplicate)
where smoke-affected grapes were harvested from grapevines exposed
to smoke for 20 min under experimental conditions, and control
grapes were harvested from unsmoked grapevines; (iv) 6 control and 9
smoke-affected Chardonnay wines from a viticultural trial involving
defoliation and/or smoke exposure of grapevines (5 treatments each
conducted in triplicate) where smoke-affected grapes were harvested
from grapevines exposed to smoke for 60 min under experimental
conditions, and control grapes were harvested from unsmoked
grapevines; and (v) 21 control and 21 smoke-affected wines from a
varietal trial involving Shiraz, Cabernet Sauvignon, Merlot, Pinot Noir,
Pinot Gris, Chardonnay, and Sauvignon Blanc grapevines (2
treatments per variety each conducted in triplicate) where smoked-
affected grapes were harvested from grapevines exposed to smoke for
60 min under experimental conditions, and control grapes were
harvested from unsmoked grapevines. Experimental smoke treatments
involved grapevines being enclosed in purpose-built smoke tents and
exposed to straw-derived smoke using methodology described
previously.21 Twenty wines were provided by industry (Table 2);
these wines were made from grapes harvested from vineyards thought
to be exposed to smoke during bushfires that occurred between
7 February and 14 March, 2009 and/or were considered by their
respective winemakers to exhibit the smoke-related sensory attributes
typically associated with smoke taint; i.e., smoky, ashy, medicinal, and
smoked meat aroma and flavor attributes.19,20 Sixty-eight commercial
wines were also included as examples of control (i.e., unsmoked)
wines. Finally, two cask wines, one white and one red, were also
included, with and without the addition of guaiacol (at approximately
30 mg/L). The presence/absence of smoke taint in industry and

commercial wines was determined by informal sensory assessment by
a panel of three experienced tasters using a 10 point scale where 1 =
unacceptable, tainted, and 10 = acceptable. Wines were stored at
constant temperature (15 °C) prior to analysis.

Determination of Smoke Taint Marker Compounds. The
concentrations of guaiacol and 4-methylguaiacol were quantified in
experimental and industry wines, as markers of smoke taint, according
to stable isotope dilution assay methods reported previously.24 This
publication describes the preparation of internal standards and
instrument operating conditions used herein. Analyses were performed
by the Australian Wine Research Institute’s Commercial Services
Laboratory (Adelaide, Australia) using an Agilent 6890N gas
chromatograph coupled to a 5975 inert source mass spectrometer
(Agilent, Palo Alto, CA, USA).

MIR Spectroscopy Measurements. Wine samples (ca. 20 mL)
taken from freshly opened bottles were centrifuged (4300g for 5 min)
and scanned in transmission mode using a UV−vis flow cell (1 and 0.2
mm path length) in the MIR region (400−4000 cm−1; 25 μm path
length) in a Multispec system Bacchus/Multispec System equipped
with a Thermo Nicolet, Avatar 380 FT-MIR spectrometer (Microdom,
Taverny, France). The fingerprint range was 1000−1500 cm−1.
Spectral data and instrument diagnostics were collected using

Table 1. Concentration of Guaiacol and 4-Methylguaiacol in
Control and Smoke-Affected Experimental Wines

wine samples
guaiacol
(μg/L)

4-methylguaiacol
(μg/L)

Shiraz smoke-affecteda (n = 27) 19−27 1−5
Viognier control (n = 12) nac na

smoke-affectedb (n = 12) na na
Grenache control (n = 30) ndc nd

smoke-affectedb (n = 30) 2−9 nd − 2
Chardonnay control (n = 6) nd nd

smoke-affectedb (n = 9) 1−5 nd
Shiraz control (n = 3) 9 nd

smoke-affectedb (n = 3) 26 2
Cabernet
Sauvignon

control (n = 3) 2 nd
smoke-affectedb (n = 3) 20 3

Merlot control (n = 3) 2 nd
smoke-affectedb (n = 3) 18 3

Pinot Noir control (n = 3) nd nd
smoke-affectedb (n = 3) 6 1

Pinot Gris control (n = 3) nd nd
smoke-affectedb (n = 3) 10 2

Chardonnay control (n = 3) nd nd
smoke-affectedb (n = 3) 1 nd

Sauvignon Blanc control (n = 3) nd nd
smoke-affectedb (n = 3) 1 nd

aBushfire smoke. bExperimental smoke. cna, not available; nd, not
detected; n, number of samples.

Table 2. Concentration of Guaiacol and 4-Methylguaiacol in
Smoke-Affected Industry Wines

wine samples
guaiacol
(μg/L)

4-methyl-
guaiacol (μg/L) sensory description

sensory
scorea

Red Blend 1 51 29 smoked meat aroma; ashy
ATb

4.3

Red Blend 2 34 17 fruit and oak aroma;
drying palate

6.8

Red Blend 3 48 33 barnyard and wood
smoke aromas; ashy
and bitter AT

4.5

Red Blend 4 6 ndb toasty, smoke aroma; sour
and drying palate

6.7

Shiraz 1 55 23 wood smoke and gamey
palate

4.8

Shiraz 2 28 8 plum, spice and oak
aromas; metallic AT

9.0

Shiraz 3 6 nd smoky, gamey aroma;
ashy AT

5.0

Cabernet
Sauvignon 1

2 nd fruit aromas; astringent
palate

7.8

Merlot 1 3 nd fruit aromas; metallic
palate

6.7

Pinot Noir 1 15 4 unpleasant AT; bandaid
palate

5.7

Pinot Noir 2 7 3 subdued fruit; smoky
aroma; dusty, ashy
palate

6.8

Pinot Noir 3 21 7 fruit, burnt sugar and
bandaid aromas; ashy
palate

6.0

Graciano 4 nd barnyard aroma 6.5

White Blend 1 11 3 yeast and rancid aromas;
smoky AT

5.3

Sauvignon Blanc 1 2 nd fruit aromas; lacks fruit on
palate; AT

8.3

Sauvignon Blanc 2 nd nd fruit and perfume aromas;
sour finish

7.3

Semillon 1 2 nd fruit aromas; flat finish 8.7

Semillon 2 2 nd fruit aromas; slightly sour;
9.2

9.2

Pinot Grigio 1 5 nd fruit and oak aromas; sour
palate; 7.0

7.0

Pinot Grigio 2 1 nd fruit and yeast aromas; 8.7 8.7
aMean scores from three judges using a 10 point scale where 1 =
“unacceptable, tainted” and 10 = “acceptable”. bnd, not detected; AT,
aftertaste.
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Bacchus acquisition software (Quant, version 4, 2001) as described
previously.18

Multivariate Data Analysis and Wine Classification. Multi-
variate data analysis was performed using The Unscrambler software
(version 9.5, Camo ASA, Oslo, Norway). Spectral data were examined
for unusual outlier samples before classification methods were used by
applying principal component analysis (PCA). Discrimination models
were developed using linear discriminant analysis (LDA), a supervised
classification technique by which the number of categories and the
samples that belong to each category are previously defined.30 The
criterion of LDA for the selection of latent variables is the maximum
differentiation between the categories and minimizes the variance
within categories. This method produces a number of orthogonal
linear discriminant functions, equal to the number of categories minus
one, that allow samples to be classified in one or another category.
LDA was carried out using the score values of the first three principal
components which gave the highest level of separation (high variance)
in the PCA models developed (JMP, v. 5.01, SAS Institute, Inc., Cary,
NC). In this technique, each sample is assigned with a dummy variable
as a reference value, which is an arbitrary number designating whether
the sample belongs to a particular group. In the current study, smoke-
affected wines were assigned a numeric value of 1 and control wines
with the value 2; the cutoff was set at 0.5. Both LDA and PCA models
were developed using full cross-validation (leave-one-out). The MIR
spectra were preprocessed using standard normal and variate
transformation (SNV).30

■ RESULTS AND DISCUSSION

The intensity of smoke-related sensory attributes and
concentrations of smoke-derived volatile phenols in wine
have been shown to be influenced by the duration of grapevine
exposure to smoke.22,27 Therefore, a diverse sample set was
sourced for this study, comprising wines derived from (i)
unsmoked grapes, i.e., commercial and experimental control
wines; (ii) grapes exposed to smoke for short durations (20 to
60 min) under experimental conditions, i.e., experimental
smoke-affected wines; and (iii) grapes exposed to bushfire
smoke for longer (but unknown) durations, i.e., industry wines.
The guaiacol and 4-methylguaiacol concentrations of exper-
imental and industry wines were determined by GC-MS to
evaluate the extent of smoke taint (Tables 1 and 2).
For experimental wines (Table 1), guaiacol and 4-

methylguaiacol were not detected in the majority of control
wines; the exceptions were Shiraz, Cabernet Sauvignon, and
Merlot control wines, which contained 2 or 9 μg/L of guaiacol
as a natural grape component, in agreement with previous
studies.31 The highest volatile phenol levels were observed in
Shiraz wines made from bushfire smoke-affected grapes; lower
levels were observed in wines made from grapes exposed to
smoke under experimental conditions. This was as expected,
given the different durations of smoke exposure. The variation
in guaiacol and 4-methylguaiacol concentrations for exper-
imental smoke-affected wines was attributed to different
winemaking practices; specifically, the different durations of
skin contact for red and white winemaking, which has
previously been shown to influence the intensity of smoke
taint.20 However, it is acknowledged that these results may also
reflect varietal differences.
For industry wines (Table 2), the volatile phenol content

varied considerably. Guaiacol was detected in all but one wine,
at concentrations between 1 and 55 μg/L; while 4-
methylguaiacol was detected in only half the wines, at
concentrations ranging from 3 to 33 μg/L. Again, this is likely
to be attributable to differences in the duration of grapevine
exposure to smoke, but it was not possible to ascertain the exact

timing, duration, and density of smoke exposure by commercial
vineyards. As such, the occurrence of smoke taint in industry
wines was further evaluated by informal sensory analysis. Seven
wines received scores of 6.0 or less: Red Blend 1, Red Blend 3,
Shiraz 1, Shiraz 3, Pinot Noir 1, Pinot Noir 3, and White Blend 1.
These wines generally contained the highest volatile phenol
levels and were also considered to exhibit apparent smoke-
related sensory attributes (Table 2), i.e., they were considered
to be heavily smoke tainted. Red Blend 2 and Shiraz 2 also
contained high concentrations of guaiacol and 4-methylguaia-
col, but from oak maturation, since these wines were described
by fruit and oak-related sensory attributes, rather than smoky
characters, albeit drying and metallic characters were reported.
Smoke-related aromas were also identified in Red Blend 4 and
Pinot Noir 2. These wines contained moderate volatile phenol
levels and received sensory scores of 6.7 and 6.8, respectively,
indicative of moderate levels of smoke taint. The remaining
industry wines contained low levels of guaiacol and 4-
methylguaiacol, and were not described by specific sensory
attributes associated with smoke taint. That said, these wines
were considered to lack fruit intensity and/or to exhibit drying,
sour or metallic characters, which might be indicative of low
levels of smoke taint.
Commercial wines were similarly subjected to informal

sensory assessment, but there was no evidence of smoke taint in
these wines (data not shown). No visual differences were
apparent in the MIR spectra obtained for the wine samples
(data not shown); therefore, PCA was performed on the
spectral data to investigate qualitative differences within the
sample set. Of the 260 wine samples analyzed, three outliers
were identified (data not shown): two control Viognier wines
(from the winemaking trial) and one commercial Riesling wine.
Spectral data collected for these samples were therefore
removed prior to further chemometric analyses.
Separate PCA models were performed as follows on five sets

of experimental wines, with the inclusion of commercial wines
of the same variety as controls and industry wines, with the
inclusion of red and white cask wines with and without the
addition of guaiacol. PCA was also developed using a larger
data set (n = 245) comprising all wines, with the exception of
the previously identified outliers and the experimental control
Viognier wines. Figures 1 and 2 show the score plots of the
MIR spectra from the Shiraz and varietal wine sets, respectively.
For the Shiraz wine set (Figure 1), clear separation between

control and smoke-affected wines was observed, i.e., samples
clustered on opposite sides of the score plot. PC1 and PC2
accounted for 73% and 10% of the variation, respectively.
Loadings were investigated to identify the wavenumber regions
that corresponded to the PCA separation. For PC1, wave-
numbers between 1000 and 1100 cm−1 can be assigned to C−O
vibrations of residual carbohydrates, i.e., fructose and glucose15

(Figure 3). For PC2, the highest loadings were observed around
1045 cm−1, due to C−O stretching, for example, from the
oxygen atom of hydroxyl groups (Figure 3). These wave-
numbers could potentially be associated with the presence
of smoke-derived volatile phenols, such as guaiacol and
4-methylguaiacol.
For Viognier wines, separation was observed between the

smoke-affected wines, which were located in the top left
quadrant (together with the two control outliers) and the
remaining control wines, which clustered within PC1 in the
other three quadrants (data not shown). The loading plot
for Viognier (data not shown) showed a large positive peak at
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Figure 1. Score plot of the first two PCs derived from the MIR spectra of control and smoke-affected Shiraz wines.

Figure 2. Score plot of the first two PCs derived from the MIR spectra of control and smoke-affected Shiraz, Cabernet Sauvignon, Merlot,
Chardonnay, Sauvignon Blanc, Pinot Noir, and Pinot Gris wines.
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1045 cm−1 wavenumbers for PC1, which accounted for 90% of
variation. Negatively correlated peaks due to PC3 (which
explained only 2% of variation) were observed at approximately
1130 cm−1 and 1415 cm−1 wavenumbers, respectively. The
latter peak occurs in the 1500 to 1400 cm−1 region typically
associated with aromatic C−C stretching, and so these wave-
numbers could also be associated with the presence of volatile
phenols.
Control and smoke-affected Grenache wines showed

reasonable separation (data not shown). Control wines were
generally positively correlated with PC2, while smoke-affected
wines were negatively correlated with PC2. The Grenache
loadings (Figure 4) also showed the influence of the 1500 to
1400 cm−1 region, again due to aromatic C−C stretching. The
wavenumbers observed around 1080 cm−1 and 1045 cm−1

could be attributed to the C−O and C−C bonds of ethanol and
other alcohols.32 Wavenumbers at 1470 and 1380 cm−1 could
be associated with vibrations of phenolic hydroxyl groups,33 i.e.,
signals which volatile phenols would influence.
The PCA models developed for Chardonnay wines (data not

shown) did not show separation between control and smoke-
affected experimental wines. Smoke-affected wines clustered in
the top right quadrant, whereas experimental and control wines
were distributed throughout the other quadrants. Significant
variation was observed between control Chardonnay wines,
which likely reflects differences in geographical origin, vintage
and/or production methods, as reported in previous stud-
ies.15−18 The loadings plot also showed broader peaks and
thus less defined information. The C−O stretch for primary
alcohols34 at 1050 cm−1 was prominent for both PC1 and PC2
(which explained 79% total variation). Characteristic bands due
to C−O−C bonds were observed at 1218 and 1108 cm−1,35

suggesting the presence of substituted phenols such as syringol
and its derivatives, compounds which have also been identified
as components of smoke-affected wines.26 Bands in the
fingerprint region between 1500 and 1200 cm−1 were attributed
to deformations of −CH2 and also C−C−H and H−C−O,

whereas bands between 1200 and 950 cm−1 were attributed to
stretching modes of C−C and C−O.36 These regions were
observed in all of the data sets analyzed.
Table 3 shows the classification of wines as control or smoke-

affected, according to the LDA of MIR spectra. Classification
was performed on both individual wine sets and the larger data
set (i.e., all wines, as described above).
For the Shiraz wine set, 100% correct classification rates were

obtained for both control and smoke-affected wines. This
indicates qualitative differences in the composition of smoke-
affected wines that enabled the classification model to
differentiate these samples from control wines, i.e., differences
presumably attributable to smoke taint. One hundred percent
correct classification rates were also obtained for experimental
Viognier wines; however, two commercial Viognier wines were
incorrectly classified as being smoke-affected. These wines were
fermented and matured in oak barrels, so misclassification
might be due to the presence of oak derived volatile com-
pounds, which include guaiacol and 4-methylguaiacol.24

Classification rates of 68% and 87% were obtained for
control and smoke-affected Grenache wines, respectively. The
wines incorrectly classified as controls comprised three replicate
wines from the winemaking trial that involved different
durations of skin contact and one wine from the yeast selection
trial. The wines incorrectly classified as being smoke-affected
were all control wines from the yeast selection trial. For these
wines, PCA showed separation according to both wine
production methods, (e.g., duration of skin contact and
winemaking yeast) and smoke taint (data not shown). This
further indicates factors besides grapevine exposure to smoke
influence classification.
Smoke-affected Chardonnay wines were 100% correctly

classified, but only 75% of control Chardonnay wines were
correctly classified. However, the misclassified wines were
experimental control wines rather than commercial wines. As
indicated above, PCA showed significant separation of commercial

Figure 3. Loadings for the first three PCs of the fingerprint region derived from Shiraz MIR spectra.
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Chardonnay wines, likely due to a combination of vintage,
regionality, and production effects.
The poorest classification rates were obtained for exper-

imental wines from the varietal trial, being 38% and 62% for
control and smoke-affected wines, respectively. For this sample
set, it was observed that the PCA results were influenced more
by grape variety than grapevine exposure to smoke (Figure 2).
Previous studies have demonstrated the use of MIR spectros-
copy to discriminate wines on the basis of grape variety.16,17

Classification rates are also likely to be influenced by the
intensity of smoke taint, with limits of detection for analysis by

MIR spectroscopy, as for analysis by GC-MS. As such, wines
with low levels of smoke taint might be classified as controls.
Six industry wines were classified as controls, being Red

Blend 3, Shiraz 2, Cabernet Sauvignon 1, and Pinot Noir 1, 2,
and 3. The classification of Shiraz 2 and Cabernet Sauvignon 1
as control wines is not unreasonable, given that neither wine
exhibited any apparent smoke related sensory attributes;
Cabernet Sauvignon 1 contained only 2 μg/L of guaiacol,
while the guaiacol and 4-methylguaiacol present in Shiraz 2
derived from oak maturation, rather than grapevine exposure to
smoke. As such, the presence of smoke taint in these wines is

Figure 4. Loadings for the first three PCs of the fingerprint region derived from Grenache MIR spectra.

Table 3. Classification of Control and Smoke-Affected Wines Using LDA

wine samples no. of wines classified as the control no. of wines classified as smoke-affected correct classification

Shiraz control (nb = 5) 5 0 100%
smoke-affected (n = 27) 0 27 100%

Viognier control (n = 14) 12 2 86%
smoke-affected (n = 10) 0 10 100%

Grenache control (n = 31) 21 10 68%
smoke-affected (n = 30) 4 26 87%

Chardonnay control (n = 16) 12 4 75%
smoke-affected (n = 9) 0 9 100%

varietal control (n = 21) 8 13 38%
smoke-affected (n = 21) 8 13 62%

industry winesa control (n = 2) 1 1 50%
smoke-affected (n = 22) 7 15 68%

all wines control (n = 126) 77 49 61%
smoke-affected (n = 119) 36 83 70%

aIncludes red and white cask wines with and without the addition of 30 mg/L guaiacol. bn, number of samples.
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questionable, and so they might be more appropriately
classified as control wines. In contrast, Red Blend 3 and
Pinot Noir 1, 2, and 3 did exhibit smoke related sensory
attributes and contained guaiacol and 4-methylguaiacol, so the
reason for their misclassification is unclear. In the case of Red
Blend 3, the presence of high levels of 4-ethylguaiacol and 4-
ethylphenol (data not shown), which are indicative of
Brettanomyces/Dekkera spoilage,37 may have confounded
classification. The industry wine set also included red and
white cask wines with and without the addition of guaiacol.
Both white cask wines were classified as controls, indicating
that the presence of guaiacol alone does not determine
classification. Both red cask wines were classified as smoke-
affected; again misclassification was attributed to oak
maturation of this wine.
When all wines were analyzed, correct classification rates of

61% and 70% were obtained for control and smoke-affected
wines, respectively. These results demonstrate qualitative
differences exist between wines made from unsmoked grapes
and wines made from smoke-affected grapes; differences that
can be observed by MIR spectroscopy and, when combined
with chemometrics, used to screen wines for the presence of
smoke taint. Some limitations were identified with the classi-
fication model developed in the current study, in particular that
compositional differences due to grape variety and oak matu-
ration may override differences resulting from grapevine exposure
to smoke (especially at low levels of smoke exposure). However,
further refinement of the model using a sample set that represents
a broader range of grape varieties, production methods, vintages,
and levels of smoke taint would enable improved classification
rates.
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(35) Guilleń, M. D.; Manzanos, M. J. Characterization of the
components of a salty smoke flavouring preparation. Food Chem. 1997,
58, 97−102.
(36) Stuart, B. Modern Infrared Spectroscopy, 2nd ed.; Ando, D. J., Ed.;
John Wiley and Sons: New York, 1996.
(37) Chatonnet, P.; Dubourdieu, D.; Boidron, J. N.; Pons, M. The
origin of ethylphenols in wine. J. Sci. Food Agric. 1992, 60, 165−178.

Journal of Agricultural and Food Chemistry Article

dx.doi.org/10.1021/jf203849h | J. Agric.Food Chem. 2012, 60, 52−5959


